

Honey or Poison? Solving the Trigger Curse in Few-shot Event Detection via Causal Intervention

Jiawei Chen^{1,3}, Hongyu Lin¹, Xianpei Han^{1,2}, Le Sun^{1,2}

¹Chinese Information Processing Laboratory ²State Key Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences

³University of Chinese Academy of Sciences

Outline

- Introduction
- Causal Intervention for Trigger Curse
- Experiments
- Conclusion

Outline

- Introduction
- Causal Intervention for Trigger Curse
- Experiments
- Conclusion

Event Detection

• Event detection aims to identify and classify event triggers in text.

Event Detection

• Event detection aims to identify and classify event triggers in text.

Few-shot Event Detection

• Supervised event detection require a large number of annotated data.

• Few-shot event detection (FSED) aims to detect new event with a few labeled data.

Few-shot Event Detection

• Supervised event detection require a large number of annotated data.

• Few-shot event detection (FSED) aims to detect new event with a few labeled data.

Trigger curse for few-shot event detection

- Trigger curse
 - Overfitting the trigger will harm the generalization ability
 - Underfitting it will hurt the detection performance

Trigger curse for few-shot event detection

- Trigger curse
 - Overfitting the trigger will harm the generalization ability
 - Underfitting it will hurt the detection performance
- For FSED, the support instances are very sparse and lack diversity.

Identify trigger curse from a causal view

T : Trigger set of support set

$E \rightarrow T$: Trigger decision process

 $E \rightarrow C \leftarrow T$: Context is generated depending on both the event and the trigger

С

 $E \rightarrow T$: Trigger decision process

 $E \rightarrow C \leftarrow T$: Context is generated depending on both the event and the trigger

 $C \rightarrow S \leftarrow T$: Event instances are generated by combining context and the trigger.

Y : Predicted result

 $E \rightarrow T$: Trigger decision process

 $E \rightarrow C \leftarrow T$: Context is generated depending on both the event and the trigger

 $C \rightarrow S \leftarrow T$: Event instances are generated by combining context and the trigger.

 $S \rightarrow Y \leftarrow Q$: The result is predicted by the instances in support set and instances in query.

- E : Event
- T : Trigger set of support set
- C : Context set of support set
- S : Support set instances
- Y : Predicted result

- Trigger is the confounder of context and predicted result.
- There exists a backdoor path $C \leftarrow T \rightarrow Y$

С

S

18

γ

Outline

Introduction

- Causal Intervention for Trigger Curse
- Experiments
- Conclusion

E : event

- Intervene on the context.
- Optimize the interventional distribution P(Y|do(C = C), E = e, Q = q)

Outline

Introduction

- Causal Intervention for Trigger Curse
- Experiments
- Conclusion

Experiment Settings

- ACE05 dataset
 - Training set: 20 event types
 - Dev set: 10 event types
 - Test set: 10 event type
- MAVEN dataset
 - Training set: 120 event types
 - Dev set: 45 event types
 - Test set: 45 event types
- KBP17 dataset
 - Training set: 25 event types
 - Training set: 13 event types
 - Training set: 13 event types

Experiment Settings

- ACE05 dataset
 - Training set: 20 event types
 - Dev set: 10 event types
 - Test set: 10 event type
- MAVEN dataset
 - Training set: 120 event types
 - Dev set: 45 event types
 - Test set: 45 event types
- KBP17 dataset
 - Training set: 25 event types
 - Training set: 13 event types
 - Training set: 13 event types

- 5 shot setting
 - Support set: 5 instances for each event types
 - Query: the full test set

Experimental Results

	Model	ACE05		MAVEN		KBP17	
		Macro	Micro	Macro	Micro	Macro	Micro
Finetuing-based	Finetune	51.0 ± 1.4	58.2 ± 1.6	30.7±1.5	$31.6{\pm}2.3$	59.4±1.9	62.7 ± 1.8
	Finetune*	39.9±1.1	$45.5{\pm}0.7$	20.8 ± 1.0	$20.6{\pm}0.8$	45.0±0.7	$47.3{\pm}0.6$
	Pretrain+Finetune	22.9 ± 6.0	$20.3{\pm}4.3$	20.9 ± 4.6	$16.9{\pm}5.2$	35.1±5.9	$30.1 {\pm} 5.5$
	Pretrain+Finetune*	14.6 ± 3.3	15.6 ± 3.4	12.5 ± 3.8	$14.9{\pm}4.0$	23.4 ± 6.8	$25.8{\pm}6.3$
Prototypical Net	FS-Base	63.8±2.8	67.3±2.7	44.7±1.4	44.5 ± 2.0	65.5 ± 2.7	67.3±3.1
	FS-LexFree	52.7 ± 2.9	$53.9{\pm}3.2$	25.6 ± 1.0	$21.8{\pm}1.4$	60.7 ± 2.5	$61.4 {\pm} 2.8$
	FS-ClusterLoss	64.9 ± 1.5	69.4 ± 2.0	44.2 ± 1.2	44.0 ± 1.2	65.5 ± 2.3	67.1±2.4
	FS-Causal (Ours)	73.0 ±2.2	76.9 ±1.4	52.1 ±0.2	55.0 ±0.4	70.9 ±0.6	73.2 ±0.9
Relation Net	FS-Base	65.7 ± 3.7	68.7 ± 4.5	52.4 ± 1.4	56.0 ± 1.4	67.2 ±1.5	71.2 ± 1.4
	FS-LexFree	59.3±3.5	60.1 ± 3.9	43.8±1.9	$45.9{\pm}2.4$	61.9 ± 2.4	$65.4 {\pm} 2.8$
	FS-ClusterLoss	57.6 ± 2.3	60.2 ± 3.2	46.3 ± 1.1	51.8 ± 1.4	56.8 ± 3.0	62.1 ± 2.5
	FS-Causal (Ours)	67.2 ±1.4	71.8 ±1.9	53.0 ±0.5	57.0 ±0.9	66.4 ± 0.4	72.0 ±0.6

- Our method based on metric-based method
- Our method can surpasses all the baselines .

- Episode: Conventional 5-way 5-shot setting
- Ambiguity: Adding some negative ambiguity event instances are sampled to the query.

- All models can achieve better performance on Episode setting.
 - Correctly recognize high-frequent triggers can achieve good performance in this setting.

- The performance of all models dropped on Ambiguity setting.
 - Trigger overfitting has a significant impact on FSED

Experiment setting

- Our method still maintains good performance on Ambiguity.
 - our method can alleviate the trigger curse problem by optimizing towards the underlying causality.

Conclusion

- Trigger Curse in Few-shot Event Detection
- Structural causal model for Few-shot Event Detection
- Causal intervention via backdoor adjustment

Thanks! Any Question?

Source Code: https://github.com/chen700564/causalFSED