

Learning In-context Learning for Named Entity Recognition

Jiawei Chen^{1,4}, Yaojie Lu^{1,+}, Hongyu Lin¹, Jie Lou³, Wei Jia³, Dai Dai³ Hua Wu³, Boxi Cao^{1,4}, Xianpei Han^{1,2,+}, Le Sun^{1,2}

1Chinese Information Processing Laboratory 2State Key Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences

3Baidu Inc., Beijing, China

4University of Chinese Academy of Sciences

In-context Named Entity Recognition

Meta-function pre-training

Named entity recognizion

Meta-function pretraining: make the features of in-context model (PLMs) are as close as the features of surrogate golden extractor which is fine-tuned using instances in demonstrations.

Detect and classify named entities in text. \bullet

In-context learning

• The model is given a few demonstrations (and instruction) of the task at inference time as conditioning but no weights are updated.

Input	Target types: disease; virus						
Instruction	Text: Cancer is a leading cause of death worldwide.						
Г	Entities: Cancer is disease.						
Demonstrations -	Text: Rabies virus is estimated to cause around 55,000 deaths per						
	year.						
L.	Entities: Rabies virus is virus.						
	Text: <i>SARS-CoV-2</i> is a strain of coronavirus that causes COVID-19.						
Output							

Entities: SARS-CoV-2 is virus. COVID-19 is disease.

Meta-function View for in-context NER

We model pre-trained language models as a meta-function for NER:

 $\mathcal{L}_{meta-function} = Average(d(F_{in-context}, F'_{fine-tuned}))$

Extraction function pre-training: pre-train to generate correct sequence in an auto-regressive way Overall loss function:

$$\mathcal{L} = \alpha \mathcal{L}_{meta-function} + \mathcal{L}_{extraction}$$

Experimental Results

 $\lambda_{instruction,demonstraions,text}$. M

The new extractor can be implicitly constructed by instruction and demonstrations

 (λ, M) (insturction, demonstraions) $\rightarrow \{\mathcal{F}: text \rightarrow entities\}$

We model pre-trained language models as a meta-function for NER:

 $\lambda_{instruction,demonstraions,text}$. M

- The new extractor can be implicitly constructed by instruction and demonstrations

Models	#Param	CoNLL03		WNUT17		NCBI-	disease	SEC-filings		AV
		1-shot	5-shot	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot	

Pre-trained Language Models

T5v1.1-large	770M	38.61	44.90	25.52	26.32	26.02	37.63	41.89	53.44	36.79
GPT2-xl	1.5B	33.69	39.55	22.63	24.86	25.54	33.25	42.83	57.05	34.93
T5-x1	3B	38.99	45.74	26.39	26.31	23.10	36.78	30.58	42.22	33.76
GPT-J-6B	6B	46.14	50.10	31.41	30.93	35.82	40.98	40.12	39.61	39.39
T5-xxl	11B	40.97	46.14	24.76	25.27	12.19	26.34	32.65	42.44	31.35
OPT-13B	13B	46.65	51.71	27.74	28.36	23.73	34.00	41.60	43.10	37.11
GPT-Neox-20B	20B	52.68	58.12	36.29	35.68	35.42	42.85	45.07	45.17	43.91
OPT-30B	30B	42.86	44.77	25.85	27.44	22.31	32.76	40.83	46.52	35.42
OPT-66B	66B	43.83	53.89	30.77	32.00	25.87	34.58	39.15	47.01	38.39

Pre-trained NER Models

ProtoNet	345M	30.04	60.26	9.74	23.03	24.73	42.32	16.79	23.67	28.82
NNShot	345M	41.92	58.39	15.76	21.78	31.59	33.14	30.19	37.86	33.83
StructShot	345M	42.34	58.44	15.78	22.05	19.87	31.48	30.40	38.44	32.35
CONTAINER	345M	45.43	61.69	15.64	20.37	23.24	27.02	34.07	40.44	33.49
MetaNER-base	220M	53.94	62.59	25.55	30.41	35.00	37.24	46.88	51.39	42.88
MetaNER	770M	57.40	63.45	31.59	36.52	40.01	44.92	52.07	54.87	47.60

MetaNER can achieve good in-context NER performance.

In-context NER method can achieve robust performance, even under a large sourcetarget domain gap

 (λ, M) (insturction, demonstraions) $\rightarrow \{\mathcal{F}: text \rightarrow entities\}$

- Meta-function pretraining: inject in-context NER ability into PLMs.
- Comparing the implicitly constructed extractor with an explicitly fine-tuned surrogate extractor.

Meta-function pre-training can effectively inject in-context learning ability into PLMs.

Conclusions

- We model PLMs as a meta-function for in-context NER.
- We propose the meta-function pre-training to inject in-context NER ability into PLMs.
- Experimental results show that our method is effective for in-context NER.