SoAS

Ao s BRI =i R

Chinese Information Processing Laboratory

Learning In-context Learning for Named Entity Recognition

Jiawei Chen!4, Yaojie Lul", Hongyu Lin! , Jie Lou3, Wei Jia3, Dai Dai?3
Hua Wu3, Boxi Caol4, Xianpei Han'4", Le Sun!:2

1Chinese Information Processing Laboratory 2State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences
3Baidu Inc., Beijing, China

4University of Chinese Academy of Sciences

Meta-function pre-training

In-context Named Entity Recognition

B Meta-function pretraining: make the features of
in-context model (PLMs) are as close as the
features of surrogate golden extractor which is
fine-tuned using instances in demonstrations.

B Named entity recogniztion
 Detect and classify named entities in text.

B In-context learning
* The model is given a few demonstrations (and

instruction) of the task at inference time as Lmeta-function = Average(d(Fin-context: F fine-tunea))
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B Overall loss function:

Meta-function View for in-context NER

L = aLmeta— function T Lextraction

B We model pre-trained language models as a
meta-function for NER:

Experimental Results
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In-context learning input

Rabies virus is ... -=> (Rabies virus, Virus)

meta-function for NER:
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B The new extractor can be implicitly constructed
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B Meta-function pretraining: inject in-context NER
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e Pre-trained NER Models
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performance.

in-context learning ability into PLMs.

B MetaNER can achieve good in-context NER

B In-context NER method can achieve robust
performance, even under a large sourcetarget
domain gap

B Meta-function pre-training can effectively inject

effective for in-context NER.
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