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Named entity recognition

• Named entity recognition (NER) aims to detect and classify named entities 
in text.
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• Diversity of entity types

• Lack of high-quality annotations

• Fine-tuning-based methods

• Metric-based methods

Few-shot learning
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Drawbacks of few-shot NER methods

• Fine-tuning-based methods

• Re-training (expensive for large-scale models)

• Cannot identify novel types on-the-fly

• Metric-based methods

• Limited to the architectures

• Sensitive to the domain shift
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In-context learning

• The model is given a few demonstrations (and instruction) of the task at 
inference time as conditioning but no weights are updated.

Target types: disease; virus

Text: Cancer is a leading cause of death worldwide.

Entities: Cancer is disease.

Text: Rabies virus is estimated to cause around 55,000 deaths per year.

Entities: Rabies virus is virus.

Text: SARS-CoV-2 is a strain of coronavirus that causes COVID-19.

Entities: SARS-CoV-2 is virus. COVID-19 is disease. 
Output

Input

Demonstrations

Text

Instruction
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Meta-function view

• We model pre-trained language models as a meta-function for NER.

• Meta-function: 𝜆𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛,𝑑𝑒𝑚𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑜𝑛𝑠,𝑡𝑒𝑥𝑡 . 𝑀

• The new extractor can be implicitly constructed by instruction and demonstrations  
𝜆.𝑀 𝑖𝑛𝑠𝑡𝑢𝑟𝑐𝑡𝑖𝑜𝑛, 𝑑𝑒𝑚𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑜𝑛𝑠 → {ℱ: 𝑡𝑒𝑥𝑡 → 𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠}

PLMs as 

meta-

function

𝓕: text → [disease, virus]

𝓕: text → [movie]

Target types: Disease, Virus

Cancer is a leading …-> (Cancer, Disease)

Rabies virus is … -> (Rabies virus, Virus)

Target types: Movie

Avatar is a 2009 epic…-> (Avatar, Movie)

Citizen Kane is a … -> (Citizen Kane, Movie)

NER Instances

NER extractor
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Meta-function pre-training

• Inject in-context NER ability into PLMs

PLMs as 

meta-function
𝓕: text → [disease, virus]

Target types: disease, virus

Text: Cancer is a leading …

Entities: Cancer is disease.

Text: Rabies virus is estimated …

Entities: Rabies virus is virus.

Text: SARS-CoV-2 is a strain of coronavirus that causes 

COVID-19.

In-context learning input
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Implicitly 

constructed 

extractor
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Meta-function pre-training

• Optimizing PLMs via a meta-function loss
• Implicitly (instruction, demonstration)-constructed extractor will be as close as an 

explicitly fine-tuned surrogate golden extractor.
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Meta-function pre-training

• Optimizing PLMs via a meta-function loss
• Implicitly (instruction, demonstration)-constructed extractor will be as close as an 
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Meta-function pre-training

• Optimizing PLMs via a meta-function loss
• Implicitly (instruction, demonstration)-constructed extractor will be as close as an 
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Meta-function pre-training

• Optimizing PLMs via a meta-function loss
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𝓛𝒎𝒆𝒕𝒂−𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 = 𝑨𝒗𝒆𝒓𝒂𝒈𝒆(𝒅(𝑭𝒊𝒏−𝒄𝒐𝒏𝒕𝒆𝒙𝒕, 𝑭𝒇𝒊𝒏𝒆−𝒕𝒖𝒏𝒆𝒅
′ ))
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Overall pre-training

• Optimizing PLMs via a meta-function loss

• Optimizing PLMs via an extraction loss
• the sequence-to-sequence entity extractor directly models the generation 

probability token by token in an auto-regressive way

𝓛𝒆𝒙𝒕𝒓𝒂𝒄𝒕𝒊𝒐𝒏 = − logς𝑃(𝑦𝑖|𝑦<𝑖 , 𝑋, 𝜃))

𝓛𝒎𝒆𝒕𝒂−𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 = 𝑨𝒗𝒆𝒓𝒂𝒈𝒆(𝒅(𝑭𝒊𝒏−𝒄𝒐𝒏𝒕𝒆𝒙𝒕, 𝑭𝒇𝒊𝒏𝒆−𝒕𝒖𝒏𝒆𝒅
′ ))
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𝓛 = 𝓛𝒆𝒙𝒕𝒓𝒂𝒄𝒕𝒊𝒐𝒏 + 𝜶𝓛𝒎𝒆𝒕𝒂−𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
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Pre-trained data

• In-context task sampling: sample instance from NER dataset

• Sample N target entity types and demonstrations

• Sample text (both positive instance and negative instance)
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Pre-trained data

• In-context task sampling: sample instance from NER dataset

• Sample N target entity types and demonstrations

• Sample text (both positive instance and negative instance)

• Type anonymization: avoid overfitting to entity type names

• randomly substituting names with a set of type indicators like <type1>, <type2>, …

• Entity extraction task
• we also conduct traditional NER settings (without demonstrations) to improve the 

ability to extract entities from text when pre-training
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Pseudo Extraction Language Modeling Task

• We design a pseudo extraction LM task since NER corpus is usually far 
smaller than the text corpus.

I think this movie is cool and I really like it very much
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Pseudo Extraction Language Modeling Task

• We design a pseudo extraction LM task since NER corpus is usually far 
smaller than the text corpus.

I think this movie is cool and I like it very much.

<type2>: this movie <type14>: like

Target type: <type2>, <type14>
Text: I think [MASK1] is cool and I [MASK2] it[MASK3].
Entities: [MASK1] is <type2>. [MASK2] is <type14>

Instruction and 
demonstrations
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Pseudo Extraction Language Modeling Task

• We design a pseudo extraction LM task since NER corpus is usually far 
smaller than the text corpus.

I think this movie is cool and I like it very much.

<type2>: this movie <type14>: like

Target type: <type2>, <type14>
Text: I think [MASK1] is cool and I [MASK2] it[MASK3].
Entities: [MASK1] is <type2>. [MASK2] is <type14>
Text: I do not like it.

Entities: like is <type14>.

Input

Output
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Baselines

• The baselines include models with different 
scales and architectures.

• We conduct in-context learning and metric-
based few-shot methods.



33

Main result

Meta-function pre-training can effectively inject in-context learning ability into PLMs.
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Ablation studies

MF: meta-function pre-training
LM: pseudo extraction LM task
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Ablation studies

Meta-function pre-training is critical for in-context learning ability



36

Ablation studies

The pseudo extraction LM task significantly benefits in-context NER
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Ablation studies

Type name anonymization prevents in-context NER model from type 
name overfitting, and therefore enhances the in-context learning 
ability
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Conclusions

◼ We model PLMs as a meta-function for in-context NER.

◼ We propose the meta-function pre-training to inject in-context NER 
ability into PLMs.

◼ Experimental results show that our method is effective for in-context 
NER.
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Source Code: https://github.com/chen700564/metaner-icl

Thanks!
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